Corona Discharge Micromachining for the Synthesis of Nanoparticles : Characterization and Applications (eBook, 2019) [MIT Libraries]
skip to content
Corona Discharge Micromachining for the Synthesis of Nanoparticles : Characterization and Applications Preview this item
ClosePreview this item

Corona Discharge Micromachining for the Synthesis of Nanoparticles : Characterization and Applications

Author: Ranjeet Kumar Sahu; Somashekhar S Hiremath
Publisher: Boca Raton : CRC Press, 2019.
Edition/Format:   eBook : Document : English : 1st editionView all editions and formats
Summary:
This book summarizes the fundamental and established methods for the synthesis of nanoparticles, providing readers with an organized and comprehensive insight into the field of nanoparticle technology. In addition to exploring the characterization and applications of nanoparticles, it also focuses on the recently explored corona discharge micromachining - Electrical Discharge Micromachining (EDMM) - method to  Read more...
Getting this item's online copy... Getting this item's online copy...

Find a copy in the library

Getting this item's location and availability... Getting this item's location and availability...

WorldCat

Find it in libraries globally
Worldwide libraries own this item

Details

Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Ranjeet Kumar Sahu; Somashekhar S Hiremath
ISBN: 9781000065404 1000065405
OCLC Number: 1124510142
Description: 1 online resource : illustrations (black and white)
Contents: Cover; Half Title; Title Page; Copyright Page; Contents; Preface; Notations; 1: Introduction; 1.1 Fundamentals of Nanoparticles; 1.2 Classification of Nanoparticles; 1.3 Overview of Application of Nanoparticles; 1.4 Research on Nanoparticles; 1.4.1 Review on Nanoparticles Synthesis; 1.4.2 Review on Nanoparticles Stabilization and Application; 1.5 Motivation; 1.6 Methodology; References; 2: Synthesis Methods; 2.1 Introduction; 2.2 Synthesis Methods; 2.2.1 Mechanical Methods; 2.2.1.1 Ball Milling Method; 2.2.1.2 Lithography Method; 2.2.2 Liquid Phase Reaction Methods 2.2.2.1 Solution Precipitation Method2.2.2.2 Chemical Reduction Method; 2.2.2.3 Sol-Gel Method; 2.2.2.4 Electrochemical Method; 2.2.2.5 Micro-Emulsion Method; 2.2.2.6 Polyol Method; 2.2.2.7 Boiling Flask-3-Neck Method; 2.2.2.8 Microfluidic Reactor Method; 2.2.3 Vapor Phase Reaction Methods; 2.2.3.1 Wire Explosion Method; 2.2.3.2 Pulsed Laser Ablation Method; 2.2.3.3 Inert Gas Condensation Method; 2.2.3.4 Sputtering Method; 2.2.3.5 Chemical Vapor Condensation Method; 2.2.3.6 Submerged Arc Synthesis Method; 2.2.3.7 Combustion Flame Method; 2.2.3.8 Plasma Processing Method 2.2.3.9 Aerosol Synthesis Method2.2.3.10 Spray Pyrolysis Method; 2.2.3.11 Solvated Metal Atom Dispersion Method; 2.2.3.12 Corona Discharge Micromachining-Electrical Discharge Micromachining (EDMM) Method; 2.3 Formulation of Colloids; 2.4 Summary; References; 3: Diagnostic Methods; 3.1 Introduction; 3.2 Diagnostic Methods for Structural Characterization; 3.2.1 Scanning Electron Microscopy (SEM); 3.2.2 Transmission Electron Microscopy (TEM); 3.2.3 Energy Dispersive Analysis by X-Rays (EDAX); 3.2.4 Selected Area Electron Diffraction (SAED); 3.2.5 X-Ray Diffraction (XRD) 3.2.6 Scanning Probe Microscopy (SPM)3.2.6.1 Scanning Tunneling Microscopy; 3.2.6.2 Atomic Force Microscopy; 3.3 Diagnostic Methods for Chemical Characterization; 3.3.1 UltraViolet-Visible (UV-Vis) Spectroscopy; 3.3.2 Ionic Spectrometry; 3.4 Diagnostic Methods for Application Characterization; 3.4.1 Ultrasonic Velocity Measurement; 3.4.2 Thermal and Electrical Conductivity Measurements; 3.4.3 Viscosity Measurement; 3.5 Summary; References; 4: A Novel Approach for Nanoparticles Synthesis-EDMM System; 4.1 Introduction; 4.2 Non-Conventional Machining Processes 4.3 Electrical Discharge Machining (EDM)4.3.1 Salient Features of EDM; 4.3.2 EDM Cell; 4.3.3 Mechanism of EDM; 4.4 Electrical Discharge Micromachining (EDMM); 4.4.1 EDMM Approach for Nanoparticles Synthesis; 4.5 Prototype EDMM System; 4.5.1 Ultrasonicator; 4.5.2 Piezoactuator; 4.5.3 Pulse Generation and Control Module; 4.5.4 Tool Feed Control Module; 4.6 Summary; References; 5: Synthesis, Characterization, and Application Suitability; 5.1 Introduction; 5.2 Synthesis of Copper Nanoparticles; 5.2.1 Experimental Parameters; 5.2.2 Experimental Procedure
Responsibility: Ranjeet Kumar Sahu, Somashekhar S Hiremath.

Abstract:

This book summarizes the fundamental and established methods for the synthesis of nanoparticles, providing readers with an organized and comprehensive insight into the field of nanoparticle technology. In addition to exploring the characterization and applications of nanoparticles, it also focuses on the recently explored corona discharge micromachining - Electrical Discharge Micromachining (EDMM) - method to synthesize inorganic nanoparticles. In the synthesis of nanoparticles, organic materials often play an indispensable role, such as providing stabilizers in the form of capping agents. This book will be of interest to advanced undergraduate and graduate students studying physics and engineering, as well as professionals and academics looking for an introduction to the nature and foundations of nanoparticle synthesis. Features: Provides diagnostic tools for the characterization of nanoparticles Explores the cutting-edge EDMM method for the synthesis and characterization of nanoparticles Discusses possible methods to overcome agglomeration of nanoparticles and achieve stable dispersion, in addition to examining the application suitability of synthesized nanoparticles.
Retrieving notes about this item Retrieving notes about this item

Reviews

User-contributed reviews

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.